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SOC/STAT/CSSS 221 Crowder 
 

PRIMER FOR MULTIVARIATE REGRESSION 
 
Regression analysis represents a key tool for assessing the nature of a focal association, checking for the statistical 
significance of a focal association and, most importantly, elaborating on a bivariate association to test theoretical 
arguments about the relationship between two variables.  This document provides a brief refresher on the purpose and 
meaning of bivariate regression analysis and an overview of multivariate regression analysis.  Rather than focus on the 
mathematics of multivariate regression (which are really a straightforward extension of those for bivariate regression), this 
introduction will focus on the practical application of these regression tools.  Specifically, it demonstrates the creation and 
interpretation of output from an SPSS estimation of a bivariate regression model and a few multivariate models to 
exemplify a typical elaboration process.  Please note that the example here is meant to demonstrate the mechanics of 
multivariate regress as a tool for assessing and elaborating on basic associations; it, by no means, represents a complete 
treatment of the topic of multivariate regression. 
 
The example uses data from the General Social Survey to explore the simple hypothesis that individual income is 
positively related to formal educational attainment.  Note that the GSS subsample used here includes only adults who 
earned income from salary or wages in the previous year. 
 
 
Bivariate regression model 
 The first step in exploring any focal relationship is the test of whether the two variables are associated with one 

another in a theoretically predicted way.  A simple bivariate regression model does the trick in many situations. 
 In SPSS, choose the Analyze menu, then Regression, and then Linear.  Select r_income, "Rs annual income in dollars" 

as the dependent variable and educ, "Highest year of school completed" as the independent variable. 
 Partial output: 

 
 Important interpretation points: 

 
 Model fit: R-square in the "Model Summary" box indicates the proportion of the total variance in the dependent 

variable explained by the independent variable, or the proportional reduction of error in predicting values of 
dependent variable achieved by taking into consideration values on the independent variable.  Our results indicate 
that about 9.4% of the total variation in income is explained by differences in education.  This low R2 is not 
surprising given that so many other factors likely affect income as well.  The "Standard Error for the Estimate" of 
R-Square allows us to perform a hypothesis test to determine whether the R2 for the model is significantly 
different from 0 or significantly different from a model with a different set of variables.  This kind of hypothesis 
test involves what is called an F-test. 
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 Components of the regression line ("B" column under "Unstandardized Coefficients") characterize the straight 
line that best fits the observed scatterplot of income by education.  This least-squares regression line is the 
straight line for which the sum of the squared prediction errors is minimized.  This line is characterized by two 
components: 
- The coefficient labeled "Constant" is the Y-intercept of the regression and indicates the predicted value of the 

dependent variable for a case with a value of 0 on the independent variable.  Someone with no education is 
predicted to have lost $12,340 last year. 

- The slope coefficient next to the name of the independent variable indicates the substantive effect of the 
independent variable on the dependent variable.  The slope for the "Highest year of school completed" 
indicates how much the predicted value of income changes for a one-unit change in education.  The slope 
coefficient of 3390.532 indicates that for each one-year increase in education, income is predicted to increase 
by $3,390.53. 

 
 Information for inferential testing: As part of the effort to demonstrate the validity of our theoretical 

expectations, we need to determine whether the observed effect of education on income occurred by chance (as a 
result of random sampling error) or reflects a real association that exists in the population from which the GSS 
sample was drawn.  In other words, we want to know whether the slope coefficient in the least-squares regression 
line is statistically significant.  Answering this question involves setting up a test of the following hypotheses: 
 

H1:   0  (the independent and dependent variables are associated in the population) 
H0:  = 0  (the independent and dependent variables are NOT associated in the population; the sample  

association that appears in the sample data reflects chance sampling error.) 
 

where  refers to the slope coefficient in the least squares regression line for the population. 
 
In testing for statistical significance we are trying to determine how likely it is to have observed a regression slope 
this large in the sample if, in reality, the slope in the population is equal to zero.  We could test this hypothesis by 
calculating the standard error for the slop coefficient and converting this slope coefficient to appropriate test-score 
(t-score).  We could then compare the obtained test score to the theoretical sampling distribution of all such 
possible scores to figure out the probability of obtaining a test score of this magnitude if the sample was drawn 
from a population in which the coefficient was actually 0 (i.e., the probability that the null hypothesis is true). 
 
Fortunately, SPSS has already done all the dirty work of calculating the standard error, t-score, and even the p-
value for the regression coefficients.  All we have to do is interpret the results.  The standard error for the slope of 
our regression model is listed in the "Std. Error" column.  The obtained t-value for each component is found in the 
column marked "t" and the probability (p-value) of obtaining such a t-value if the population value was actually 0 
(i.e., if the null hypothesis was true) is found in the column marked "Sig."  In order to answer the question about 
the statistical significance of our slope coefficient, we can refer to the "Sig." column.  If the p-value reported there 
is lower than our preset maximum probability (alpha usually set at .05), then we can say that the probability that 
the null hypothesis is true is so low that we don't believe that it is true.  In our example, the obtained t for the 
slope coefficient is 13.920 which has a p-value of .000.  This means that there is essentially no chance that the 
coefficient happened by chance as the null hypothesis implies.  We can confidently reject the null hypothesis in 
favor of the research hypothesis that the effect of education on income is not 0 in the population; the slope 
coefficient is statistically significant, supporting our theoretical expectations. 
 

 Standardized coefficients: The next column of the "coefficients" box displays the "Standardized coefficients" for 
the effect of "Highest year of school completed" on "R's income."  The standardized coefficient (called Beta or 
b*) expresses the impact of the independent variable in terms of standard deviation units.  It tells us the number of 
standard deviations the dependent variable increases or decreases with a one standard deviation increase in the 
independent variable.  In our example, the standardized coefficient of .307 indicates that income goes up by about 
three-tenths of a standard deviation for each increase of one standard deviation in education.  The standardized 
coefficient is calculated by multiplying the unstandardized coefficient, b, by the ratio of the standard deviations 
for the independent and dependent variables.  Because they express all coefficients in terms of the same units 
(standard deviations), standardized coefficients become especially handy in multivariate models where we want 
to directly compare the size of the impacts of different independent variables. 
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Multivariate regression model 
 Demonstrating that there is a substantively large and statistically significant bivariate association between education 

and income is only the first step in the process of building the case for the existence of a real (causal) relationship 
between the two variables in the population.  The next steps involve eliminating alternative explanations for the 
association (both sources of spuriousness and redundancy) and demonstrating that the association between the 
independent and dependent variables fits into a broader system of relationships involving antecedent, intervening, 
consequent, and/or conditioning variables in a way that is theoretically anticipated.  These steps are carried out 
through the use of multivariate regression analysis. 

 Multivariate regression techniques represent a straightforward extension of the bivariate regression analysis just 
reviewed.  As the name implies, multivariate models simply add more predictors to the existing bivariate model.  
Three key differences are worth highlighting: 1) the interpretation of model fit (R-squared) must incorporate a 
reference to all of the variables in the model; 2) the slope coefficients must be interpreted as partial coefficients; and 
3) we are now interested not only in the magnitude of a coefficient in a single model, but how the slope coefficient 
related to our focal independent variable changes from one model to another.  An extension of the bivariate example 
above will quickly illustrate these differences. 

 
Exclusionary strategy Part 1 
 Lets start by excluding one possible source of spuriousness, respondents' age.  Compared to younger people, older 

respondents have had more time to accumulate education and, simply because they have had more time to build a 
career, are likely to make more money.  Since age is likely correlated to both the independent and dependent variable 
and is causally prior to both, it represents a potential source of spuriousness that must be controlled if we are to build 
the case that education has a causal impact on income. 

 In SPSS, choose the Analyze menu, then Regression, and then Linear.  As before, we select r_income, "Rs annual 
income in dollars" as the dependent variable.  Now, however, our independent variables include both educ, "Highest 
year of school completed" and age, "Age of respondent."  Note that one of these variables, age, is really a control 
variable and that we are primarily interested in examining the effect of our focal independent variable, education.  
Although we know the difference, SPSS does not so the program refers to all predictors, regardless of their role in the 
analysis, “independent variables. 

 
 
 
Important interpretation points: 
 

 Model fit: R-square is a general measure of the overall fit of entire model; it indicates the proportion of the total 
variance in the dependent variable explained by all of the independent (focal and control) variables in 
combination.  Now that we have added age as another predictor, we can now explain 11.7% of the total variance 
in income.  Or, to think of this another way, we can reduce our errors in predicting values of income by 11.7% if 

Model Summary

.341a .117 .116 28855.14823
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), AGE OF RESPONDENT,
HIGHEST YEAR OF SCHOOL COMPLETED

a. 

Coefficientsa

-25540.6 3887.936 -6.569 .000

3312.657 240.897 .300 13.751 .000

344.062 50.292 .149 6.841 .000

(Constant)

HIGHEST YEAR OF
SCHOOL COMPLETED

AGE OF RESPONDENT

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Rs annual income in dollarsa. 



 4

we take into consideration values on both education and age.  Once again, SPSS provides us with the information 
needed to conduct an F-test of for whether the R2 for the model is significantly different from 0 or significantly 
different from our earlier model containing only education as a predictor. 

 
 Y-intercept:  In a multivariate model, the Y-intercept (“Constant”) indicates the predicted value of the dependent 

variable for a case with a value of 0 on ALL of the independent variables.  So, a person age 0 with no education is 
predicted to have lost $25,540.60 last year.  Of course, we should avoid placing too much emphasis on the 
substantive meaning on the value of this y-intercept since there is there are no members of the sample (or the 
population of interest) who have these characteristics.  Instead, the y-intercept represents an important starting 
point in predicting values of income for individuals with combinations of age and education that do exist in the 
sample. 

 
 Partial slope coefficients: Each slope coefficient in a multiple regression model reflects the impact of the given 

variable while controlling for all other variables included in the model.  In other words, these partial regression 
coefficients show use the net impact of these variables on the dependent variable with the influence of all other 
variables in the model removed.  In our results, the coefficient for education indicates that, once the influence of 
age is removed, income increases by an average of $3,312.66 for each additional year of education.  Some people 
like to think of partial coefficients as the influence of a one-unit change in the independent variable among those 
with similar characteristics on the control variables.  So, it is reasonable (although not exactly statistically 
precise) to say that among people that are of similar age, a one-year difference in education is association with an 
additional $3,312.66 in income.  Of course, the partial slope coefficient of 344.06 for age can be interpreted in a 
similar way: Among people with similar levels of education, a one-year increase in age is associated with an 
additional $340.06 in income. 

 
 Attenuation of the education effect: If education does really have a causal impact on income as our theoretical 

argument suggests, then we should see a statistically significant effect of education even when we remove the 
effects of age (and any other potential source of spuriousness or redundancy).  If the original association is wiped 
out (completely attenuated) when we statistically control for age, then your theoretical expectation of a causal 
relationship between education and income would be contradicted.  Thus, comparing the partial coefficient for 
our focal independent variable to the coefficient from the bivariate model provides an indication of how much of 
the original association was actually spurious, created by the influence of age on both education and income.  In 
fact, after controlling for age, the effect of education doesn't change much (from 3390.532 in the bivariate model 
to 3312.657 in the multivariate model) and remains statistically significant with a .000 p-value.  This adds a bit 
more support to the idea that there is a real (causal) relationship between education and income. 

 
 
 
Exclusionary strategy Part 2 
 The exclusionary strategy is potentially endless.  Given the complexity of social phenomena, there are countless 

factors that might affect the dependent variable in most studies and, to the extent that they are also associated with the 
focal independent variable, each of these influences also represents a potential source of spuriousness or redundancy.  
Predicting income is no exception; we can think of a wide range of other factors that might influence income and, to 
the extent that they are also correlated with education, these third variables might account for the observed association 
between education and income.  Two more fairly obvious examples are gender and race; both of these variables are 
may be associated with both education and income and controlling for these will help us to identify the true net effect 
of education on income. 

 
 Dummy variables: Both gender and race are categorical variables, so their inclusion adds a new wrinkle to our 

analysis.  Both variables must be converted into dummy variables before they can be used in our regression (or 
correlation) analysis.  To tap the effects of gender, we can create a variable, female, that takes a value of 1 for women 
and a value of 0 for men (note that male is the omitted category).  We can also create a series of dummy variables to 
characterize respondents' race.  Using the GSS data, we could create dummy variables for each major racial group 
plus a residual category for people of other races.  The dummy variable for one of these race categories is omitted as 
the reference group and the rest are entered into the multivariate regression model as new independent variables.  
Recall that education remains our focal independent variable and age, gender, and race are simply added as controls 
for possible sources of redundancy or spuriousness. 
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 More multivariate regression output: 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 

Dummy variable: A dichotomous categorical variable taking a value of 1 for those cases with a 
particular attribute and 0 for all others 
 
 Example: The effect of gender can be examined using a dummy variable called "female" that 

takes a value of 1 for women and a value of 0 for men. 
 
 The regression coefficient related to the dummy variable indicates the difference in the value of 

the dependent variable between cases with a value of 1 on the dummy variable and those with a 
value of 0 on the dummy variable 
- Example: In predicting income, the coefficient for "female" indicates the average difference in 

income between females and males. 
 
 A series of dummy variables is often used to examine differences in the dependent variable across 

a larger number of categories of a variable 
- Representing a multi-category variable with a single variable is unacceptable because a "one-

unit increase" is meaningless for such a variable 
- Example: region represented with a series of four dummies: North, South, East, and West 
- Note that categories may combined in order to produce stable estimates and to capture only 

the statistically important distinctions between categories 
 
 In a regression model, one category (dummy) must be omitted.  This omitted category is the 

reference category against which the other categories are compared; the regression coefficient for 
each included dummy represents the mean difference in the dependent variable between that 
category and the reference category. 
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Important interpretation points: 
 

 Model fit: The reported R-square indicates that we have boosted the explanatory power of our model by 
adding indicators of respondents' gender and race.  The combination of education, age, gender, and race 
account for just about 18% of the total variation in respondents' income. 

 
 Partial slope coefficient for the dummy variables: The key to interpreting slope coefficients for 

dummy variables is remembering that you are making comparisons to the category that is omitted from 
the model -- the reference category.  For example, in estimating the effects of gender on income, we 
have included a variable taking a value of 1 for females and have omitted the (implicit) dummy variable 
for males. 
- The coefficient of -13872.9 for the variable female indicates that, on average, women in our sample 

earned almost $14,000 less in 2002 than did the men in our sample.  As before, each slope 
coefficient in a multiple regression model reflects the impact of the given variable while controlling 
for all other variables included in the model.  So, we know that the observed gender difference in 
income is not due to differences in education, age, or race among the women and men in the sample. 

- The coefficient for each race category is interpreted in a similar way.  Here we have omitted the 
dummy variable for white race as our reference category (whites represent the largest group and 
most theoretical arguments focus on income differences between whites and other groups).  So, the 
coefficient for each of the included categories indicates the difference between the average income 
of members of the group and the average income of whites in the sample.  For example, the 
coefficient for the dummy variable black indicates that, on average, black members of the sample 
earned about $6,115 less than did white members of the sample.  Once again, this racial difference 
is among those with similar values on the other variables in the model (i.e., net of the influence of 
education, age, and gender). 

 
 Attenuation of the education effect: Given our focal interest in the effects of education on income, the 

most important finding in the output above is that the coefficient for education is not greatly attenuated 
when we control for two more potential sources of spuriousness, gender and race.  In fact, a comparison 
of coefficients in the previous two models shows that the coefficient for education actually increases 
slightly with the addition of controls for gender and race (from 3312.66 to 3346.17).  So, once again, the 
persistence of the education effect even after eliminating two more potential sources of spuriousness 
bolsters the argument that education has a real causal effect on income. 

 
 
 

Inclusive strategy 
 After you have eliminated all of the sources of redundancy and spuriousness that you can think of, it is time 

to move on to the inclusive strategy.  Demonstrating that the focal relationship is connected to a broader 
network of relationships predicted by your theory helps to strengthen the support for the theoretical 
explanation.  Fortunately, this inclusive strategy can also be accomplished through the use of multivariate 
regression models. 

 In this example, we will test the theoretical argument that education affects income through its influence on 
occupational prestige.  That is, we expect that high levels of education increase the chances of ending up in 
a prestigious occupation and that this occupational location is associated with higher pay.  In this sense, 
occupational prestige can be thought of as a key intervening variable linking education to income.  We can 
classify the occupations of the workers in the sample using an occupational prestige score created in 1980.  
The score ranges from 0 to 100 with higher scores indicating higher levels of occupational prestige.  If this 
theoretical argument is correct, the coefficient for education should be attenuated (reduced) when we 
control for the influence of occupational prestige in our multivariate regression model.  Here is the 
multivariate output to test this theoretical assumption: 
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 More multivariate regression output: 

Important interpretation points: 
 

 Model fit: According to the reported R-square statistic, we can account for about 22% of the variation 
in income by taking into consideration a combination of education, age, gender, race, and occupational 
prestige. 

 Partial slope coefficient for occupational prestige: As expected, occupational prestige has positive 
effect on income; a one-unit increase in prestige is associated with an increase in income of about $527.  
This may not seem like much in comparison to the large coefficients for race and gender.  However, we 
must keep in mind that these predictor variables have drastically different scales.  A comparison of the 
standardized coefficients indicates that a increase of one standard deviation in occupational prestige 
produces a larger bump in income than does a one-standard-deviation increase in any other predictor 

 Attenuation of the education effect: Once again, the change attenuation of the education coefficient is 
of central interest to us given that our focal relationship refers to the impact of education on income.  As 
predicted in our theoretical arguments, the inclusion of occupational prestige in our model does result in 
a substantial reduction in the coefficient for education (from 3346.17 to 2078.83).  This attenuation of 
the coefficient is consistent with the theoretical argument that education influences income, at least in 
part, by influencing the types of jobs that respondents end up in.  Of course, the fact that the net 
coefficient for education remains fairly large and statistically significant indicates that there must be 
other mechanisms, besides occupational prestige, through which education affects income.  Specifying 
these mechanisms from our theoretical model and testing for these mechanisms using multivariate 
regression techniques represents an important continuation of the inclusive strategy. 

Model Summary
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